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The problem of the profiling of the contour of the leading edge of a plane body which, on joining the initial and final fixed points, 
gives minimum drag in a uniform supersonic flow of an ideal (inviseid and non-heat-conducting) gas is considered. According 
to previous investigations, it is close to a segment of a straight line in that part of the space D of the governing parameters of 
the problem (the Maeh number M**, or the dimensionless velocity of the free stream V., the relative thickness x, and so on) for 
which there is an attached shock wave in a flow past the required contour. By making use of this fact one can find the "main 
correction" to the rectilinear generatrix in an explicit form and represent the characteristics of practically optimal leading edges 
in the form of isolines in the V.x-plane. The approach naturally leads to an exact result in the ease of a rectilinear optimal generatrix 
(a wedge). It is well kncr~cn that a wedge in the body of minimum drag for zero reflection coefficient ~ of pressure perturbations 
from the oblique shock wave which occurs in a flow past a wedge. It is shown that the above-mentioned possibility is not unique. 
In addition to the case when Z(V_ x) = 0 the rectilinear generatrix is also optimal for ~, ~ 0 when the flow beyond the oblique 
shock wave is sonic. 

I. Let x, y be Cartesian coordinates with the x-axis directed along the velocity vector V.  of a uniform 
supersonic flow (Filg. la, where the double line is the shock wave and the thin lines are the c +- and c-- 
characteristics). Le~t the origin of coordinates coincide with the initial point i of the required generatrix 
if, .and' .bY virtue of this', xi ---- Yi = O, X / =  X and y), = xX for specified X and x. Henceforth, the subscript 
** is assigned to the parameters of the free stream and the letters i , f , . . ,  to quantities at the corresponding 
points. For the velc~ity, density p and pressurep scales, we take W'., p*** and p***V .2, where V = I V I, 
and the index ° is attached to dimensional quantities. It is required to find that generatrix with the 
equation x = xW(y) ~> 0 which on joining the fixed points i and f, gives the minimum drag 

xX 

X = J ( p - p . ) d y  (1.1) 
o 

Within the framework of approximate approaches, the solution of this problem is known and is 
comparatively simple. For instance, in the case of thin bodies (x ,~ 1) when linear theory can be applied 
at moderate supersonic Math numbers M.,  the optimal generatrices are straight lines [1]. If x ~< 1, they 
are also straight lines [1-3] in the approximation of Newton's law of resistance. However, when x > 1, 
the optimal contour in the same approximation consists of an end facex ---- 0 and a straightline segment 
at an angle of ~4  to the x-axis. The end face appears as a segment of a boundary extremum due to the 
constraints on the length (x >I 0) and the existence of a boundary inside which Newton's approximation 
holds, that is, along: the contour [2, 3], dxW/dy >~ O. If, for a fixed M** > 1, the relative thickness x is so 
small that there carmot be a flow around the generatrix i f  with an attached shock wave (x > x* where 
x* is a function of M.),  then the appearance in the optimal generatrix of an end face is naturally to be 
expected by virtue of the constraint on the length and also within the framework of the exact gas dynamic 
equations for an ideal gas, that is, within the framework of Euler's equations. In the axially symmetric 
case without an end face, an optimal leading edge of fixed length cannot be constructed for any x > 0 
either within the approximation of Newton's (or Busemann's) law of resistance or within the framework 
of Euler's equations [2-5]. 

In the approximation of Euler's equations, the first exact result, which refers to the plane leading 
edges of minimum drag, was established in [6] (also, see [7]) when investigating the flow past bodies 
which were close to wedge-shaped. In this case, the problem obtained by linearizing the relationships 
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Fig. 1. 

in the shock wave, the no-flow condition on the body and the equations of the flow between the slightly 
distorted genera&ices of the body and the shock wave, was considered. Its solution depends, in particular, 
on the reflection coefficient y = &J-/&V+, where 6p+ is the pressure perturbation which arrives at the 
shock wave along the c+-characteristics and &n- is the perturbation inp which leaves from it along the 
c--characteristics. Although the theory developed in [6,7] was linear, the following exact conclusion 
followed from it: the optimal leading edge is a wedge when 3L = 0. It would appear that the main 
difference between this conclusion and the analogous result of linear theory or the Newton approxi- 
mation is the following. The reflection coefficient is a function of M,, the angle of inclination of the 
shock wave CT, the adiabatic index K in the case of a perfect gas with constant heat capacities, etc. Hence, 
condition h(K, CT, . . .) = 0 is only satisfied in exceptional cases. 

A similar conclusion was arrived at in [8,9], independently of [6], as the result of an attempt to solve 
the variational problem which has been formulated above within the framework of Euler’s equations 
and the method of a reference contour. Inthelatter papers, the curves h(V,, a) = 0 were constructed 
in the &r-plane for a perfect gas with K = 1.4 and it was found that, depending on V,, this equation 
(in a) has from one to three roots. Moreover, it is satisfied in the trivial case when IS = IX_, where 01 is 
the Mach angle. This root is of no interest as it corresponds to a “wedge” with z = 0. 
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Solution of the '~linear problem formulated in [6] enabled us to develop the efficient approach of 
"variation in characteristic e-bands". This approach, which has been extended to arbitrary bodies (see 
[4]), has become an important tool for investigating the optimal solutions of variational problems in 
gas dynamics. 

As applied to the problem under consideration when k ~ 0, Fig. l(b) explains the essence of this 
approach. In it, the contour "which is suspected of being optimal" is only varied in the e-neighbourhood 
of the point d. If ~. < 0, the pressure perturbations leaving the body change sign on reflection from the 
shock wave. The plus and minus signs in Fig. l(b) correspond to 5p > 0 and 5p < 0. On account of the 
special choice of the segment of the contour which is varied, after reflection there are only e-bands 
with 5p < 0 in it which, as can be shown, leads to an uncompensated reduction in Z- Hence, if ~. < 0 
(in the V_o-plane, the corresponding point belongs to the subdomain D- of domain D), a generatrix 
of the type shown in Fig. l(b), which does not have a corner point at point d, is not optimal. Furthermore, 
it follows from this treatment that, when ~. < 0, the optimal contour does have a corner point at the 
point d around which flow occurs with the formation of a pencil of rarefaction wav.es. Since, however, 
there is no corner point when ~ = 0, it is natural to expect that its magnitude is proportional to ~ .  
Similar reasoning, when applied to the point dl, indicates that there is also a corner at this point. There 
is a flow past the corner point in dl with the formation of a pencil of rarefaction waves when ~ ,  L~I < 
0, and its magnitude is proportional to this product and so on. The reflection coefficient ~. is a quantity 
which is considerably less than unity [6, 7]. It follows from this that the breaks at the points dl . . . .  , 
will be much smaller than the "main break" at the point d. For positive ~ ,  ~1  and so on, flow occurs 
around the corresponding corner points with the formation of weak shock waves and this, in turn, leads 
to a "crowding" of breaks into the neighbourhoods of the corresponding points. 

The exceptional complexity of the optimal contours which are obtained by this analysis (see [3]) is 
compensated by the smallness of the reflection coefficient which has been pointed out above. Their 
products (especially those including reflection coefficients from the weak shock waves which arise in a 
flow past "convex" corner points) are so small that only the "main corner point" (or corners) close to 
the point d turn out to have any substantial effect on the magnitude of Z. 

The arguments which have been presented above were already possible at the start of the 1950s, that 
is, after the publication of [6]. In spite of this, the history of the solution of this problem is extremely 
complex and, sometimes, also dramatic. An important stage in its solution was the development in [10, 
11] of an algorithm for solving the variational problem formulated within the framework "of the general 
method of Lagrange multipliers". The basis of this algorithm is a numerical calculation by the method 
of characteristics of the flow past the contour which has been found from the preceding iteration and 
the solution of the problem for the Lagrange multipliers from the "conjugate" problem which is solved 
against the flow. The flow parameters and the Lagrange multipliers on the required generatrix, which 
are found at each iteration, are then substituted into the optimality conditions, the closure of which is 
used in the procedure for improving the contour which is being profiled. The numerical algorithm which 
was implemented in [10, 11] for the parameters at the point w which belong to domain D- of the V.~- 
plane permitted the construction of certain optimal plane leading edges around which a uniform flow 
of an ideal, perfect gas with ~ = 1.4 occurs. Their contours consist of two practically rectilinear segments 
which intersect at the point d. The corner at the point d past which flow occurs with the formation of 
a pencil of rarefaction waves is small while the corners in the neighbourhoods of points dl,.. ,  are not 
taken into account 'within the framework of the numerical algorithm in [10, 11]. 

According to the lresults in [10, 11] and an analysis within the framework of ''variation in characteristic 
e-bands" taking into account the smallness of the reflection coefficient L, the optimal leading edges 
past which flow occurs with an attached shock wave are close to wedges. If, here, V. and x belong to 
the domain D-, in which the reflection coefficient ~. at the point w is negative, the main deviation of an 
optimal contour from a straight line segment lies in the corner point past which there is a flow with the 
formation of a pencil of rarefaction waves. These facts enable one, in the class of contours consisting 
of two rectangular segments which intersect at d, to obtain explicit formulae which determine the 
practically optimal plane generatrices, to calculate their geometric characteristics and Z, to make a 
comparison with the results in [10, 11] and to estimate the influence of the factors which have not been 
taken into account :in this approach on the shape of the configurations which have been constructed. 
This is done below. 

2. The rectilinear generatrixy = xx is represented by the dashed line in Fig. l(c), and the oblique 
shock wave corresponding to it is given by the equation of the straight line y = x tan a. The contour 
consisting of two rectilinear segments, the shock wave ibw in the corresponding flow, the pencil of 
rarefaction waves cde, the closing characteristic wf and the stre~nline bc are represented by the solid 



398 A.N.  Kraiko and D. Ye. Pudovikov 

lines in the same figure. It follows from the variation in a narrow band described above that a contour 
with a similar comer point can only be close to the optimal contour in the case of negative L Such a 
conclusion will also be drawn below. However, the sign of L is arbitrary until it is obtained within the 
framework of the analysis which is subsequently developed. 

Let q~ be the value of some parameter for a flow past a wedge and tp + Atp be its value when the flow 
occurs past a body with a corner point at d. Let  AO_ and Ap_ be perturbations (increments) of O, that 
is, of the angle of inclination of the velocity vector to the x-axis and to p o n / d  and in/dc, let AO+ and 
Ap+ be perturbations (increments) on dh  and in d h k  and, finally, let Ap be a perturbation inp  on hr. 
Then, for the increment in g from (1.1), we find 

A g = x X A p +  + Yd ( A p _  - A p + )  + ( A p _  - Ap+)Ay d + I(Ap - Ap+)dy 
h 

(2.1) 

whereya + Aya is the ordinate of the point d of the contour with a corner point andya is the corresponding 
magnitude for the wedge, which is equal to 

Yd = x X  sin(O+ c~ - o) 
sin(o - O + ix) 

Since X and x are fixed, the required contour i d f  is determined by two increments, AO_ and AO+, 
AO_ and Axd, etc. for example. In addition, the latter must satisfy the condition that one of the 
c+-characteristics of the pencil must pass into the point w, that is, the point of intersection of the 
"perturbed" shock wave and the dosing c--characteristic. The formulation of this condition is somewhat 
simplified if AO, the increment in 0 on dg, and Ao, the increment in o on the rectilinear segment of the 
shock wave ic, are taken as the required increments. In this case, to determine the optimal values of 
AO m and Ao m which give a minimum in A~, it is necessary to represent the right-hand side of (2.1) with 
an a~atracy of no less than to quadratic terms in AO and Ao, inclusive. The linear approximation formulae 
[5, 6] for determining AO m and Ao m are obviously insufficient, with the exception of the special eases 
AO m = Ao m = 0, when a wedge is optimal. 

By virtue of the conditions on an oblique shock wave, the increment in any parameter AqL on /d  and 
in/dc is a known function of Ao and, moreover, according to what has been said above and formula 
(2.1), it is necessary to retain the linear and quadratic terms in Ao, that is, to put 

Atp_ = a~ (1 + b~oAo)Ao (2.2) 

For a specified free stream, the coefficients a¢ and be in (2.2) are known functions of o or O. Numerical 
differentiation may be used to determine them by calculating the three values of 9: 9(o), 9(0 + 8o) and 9(0 - 
5o) with 5o ,~ o using the relations in the oblique shock wave for each o. In this investigation, the coefficients 
were found both by numerical differentiation and using explicit formulae as a check. In the case of a perfect gas, 
the formulae for the coefficients a~ and b~, which are subsequently used have the form 

2sin2o 
al' = ~+1 ' bp = ctg2o, a 0 = 1 + b  I - a  I 

( K  - I )COS 2 ( O  - O )  8 ctg2ocos 2 (O - O) 
= , b I = 

al (K+l)cos20 (K+I)M2 sin20 

3+cos4o.] 
bo= l-'~-[ ( b l - a l ) 2 t g ( O - O ) - a l t g O - b l  ~ J 

ao L 

2(I-e2)KM2 sin20 K- I 
¢lP = 2 E m , 

(K+I)(I+eKM p)2' g+l  

K(pap - pap ) a V - Ma a 
aa = 292a ' a M  = a 

Kpap -- pal ,  
a s = S, S = pp-I/K 

rpp 

K(pap - Pal, ) 
av - (K-I)p2V 

- a  M 

, ac~ = M .r---:----~/M~_I 

On the fight-hand sides of these formulae there are the following,parameters beyond the oblique shock wave: 
the modulus of the velocity V and the velocity of sound a = q(~p/p) divided by V°.. The Mach number 
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m = V/a, the Math angle ~ arid the angle of rotation of the flow in the shock wave 0, which is equal to the angle 
of inclination of the velocity vector to the x-axis, and also the entropy function S, the density and the pressure 
divided by (0"I,'*=2)1/~/p*, . . .2 p.  and p**V*, respectively, which are functions of M**, o and r that are determined using 
known relations. 

The equations [12] 

d A O + A ( p + A p ,  S + A S ) d A p = O .  A ( p , S ) = ' ~ ' - ~ - I / ( D V  2 ) (2.3) 

are satisfied along l~he c +- and c--characteristics. 
Henceforth, plus (minus) signs correspond to c+(c-)-characteristics. To terms in A 2, inclusive, where 

A is a small parameter which characterizes the magnitude of Ao, AO or AOa ~ I AO+ - AO_ I, we have 
from this that 

dAO + A(I + CpAp + CsAS)dA  p = 0 

4(M 2 - 1) - (K + I)M 4 4 + 2(K - 2)M 2 - (K - I)M 4 (2.4) 
Cp = 2KM2(M 2 - l)p ' Cs = 20¢ - 1)M2(M 2 - 1)S 

The coefficients Cp and Cs which are written out in (2.4) for a perfect gas, as well as a ,  and b,, can 
also be found by numerical differentiation (as was done as a check) using the values of A(p +_ 8p, S) 
andA(p, S - &~) with ~)p ~<p and 8s ~< S, respectively. 

After integration over the characteristic e-bands in the neighbourhood of the point of reflection from 
the shock wave (Fig. lb), the equations of the characteristics (2.3) or (2.4) (written in the linear 
approximation to terms in A, inclusive) lead to a very simple formula for the reflection coefficient 
By using the results of this integration (the equation for the c+-charactedstic is integrated over the 
c--band and vice versa), performing some simple calculations and taking into account the definition of 
ap and ao in (2.2), we find that 

~. = (Aap - a o ) I (Aap + a o) (2.5) 

In the case of shock waves of the weak family when M ~> 1, both the pressure and the angle O become 
larger as a increases. Hence, in the cases under consideration, ap and ao as well as A are positive 
and only the numerator in (2.5) can vanish. According to (2.5) I ~. I < 1 ,  which has been noted, for exam- 
ple, in [6, 7]. Final~Iy, it follows from the expressions for ap and ao presented earlier that ~, = 0 when 
0 = 0 .  

According to what has been said above, Ap_ and Ap+ in the first two terms on the right-hand side of 
(2.1) must be dete~rmined to terms in A t, inclusive. On using formula (2.2) for this, integrating (2.4) 
along any c--characteristics from the shock wave up to the wall and taking account of the fact that AS 
is constant under tlae streamline bc and is determined by the same formula (2.2), we obtain 

Ap+ = Ap_ + __1 {AO+ - a~ (1 + boAt~)At~ + (aoAt~ - AO+ ) x 
A 

Ap_ = ap(l + bpA~)A~ 

If the subscript is removed in the first formula of (2.6) and from Ap and AO+, then one obtains an 
expression which yields Ap on dg in terms of Aa and A0 up to terms in A 2. 

The condition that a contour with a corner point should join points i a n d f w i t h  an accuracy up to 
terms in A 2, inchisive, reduces to the equation 

x d ( 1 + A1)_ tg O)AO + ( X  - x d )(I + AO+ tg O)AO+ + A x  d (AO_ - Aa)+) = 0, 

x d = X sin(O + or- if) 
sin(ff - 0 + ix) 

Using this and expression AO+ with the same accuracy, as (2.26) contains AO+ to the first and second 
powers, we obtain 
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AO+ - A O _  = O a A t ~  + Oat  ~ (Ate )  2 + OcxAt~ Ax  d 

s in (~-  0 +tx) Oa ~ ao sin2(t~- O + o0 
Oa = - a °  2sin(t~-O)costx '  " = - 4 X s i n : ( ~ - 0 ) c o s 2 t x  

O~,~ = boo a - a 2 tg ~ sin(O + o~ - cr)sin(~ - 0 + tx) 
4sin2(~ - O)cos 2 ct 

(2.7) 

We substitute A0+ from (2.7) into (2.6) and retain terms up to A 2, inclusive, keeping in view their 
subsequent use in (2.1). As a result, we arrive at the expression 

Ap+ = 3p_ + P,,Ae + P,,,,(Acr) 2 + Po.,Aa Axd 

e , , = o , ,  e,,,, o,,,, ' e,,, o,,x 
a ' =- -A-  a ~, 2A J = a 

(2.8) 

In (2.1), Ayd is multiplied by Ap_ - Ap+ = O(A). Hence, confining ourselves solely to the linear part 
in the expression for Ayd in terms of At~ and AXd, we find that 

aoXsin(O + c~ - a )  

Ay d = ~x d tgO+ c o s 2 0 s i n ( a -  0 +o0 Aa (2.9) 

If (2.8) with Ap_ from (2.6) and (2.9) is substituted into the terms outside the integral on the right- 
hand side of (2.1), it then takes the form 

f 
AZ ----- Za  a(~ + ~,tJt~ (a(~) 2 + I (Ap - Ap+)dy 

h (2.10) 

X~ = ~ (Aa v +ao) tgO,  )Caa = X apb v tgO+2Paa sin(~-O)cOS~sin(~ - 0 + ~) tg 0 + 

a2 sin(O + t x - ° )  ] 

+ 2 A c o s 2 0 s i n ( a -  O)cos(x.] 

It is clear that ~ vanishes simultaneously with the reflection coefficient and is also independent of 
the magnitude of ~, in the case of a shock wave which has degenerated into a characteristic (0 = 0). 
Since, in the latter case according to (2.5) and the formulae for ap and a~, X = 0 simultaneously, the 
coefficient ~ on the V. axis of the V.x-plane vanishes with a higher order than on the other lines of 
D o of this plane, were ~,(V., x) = 0. 

After substituting (2.8) and (2.9) into (2.1), the terms AaAx a occurring in (2.1) and (2.8) cancel out, 
which simplifies the determination of the optimal A~ and A0. Since this product does not occur in 
(2.10), it now remains to find the integral h f  occurring in (2.10) up to terms in A 2. The difference 
Y~-Yh = O(A). Hence, in deriving the required formula, it is sufficient to approximate the change in 

e integrand from zero when y = Yh up to Apf - z~o when y = yf with a straight line. As a result, we 
obtain 

1 
Ji (Ap - Ap+)dy = ~- (Apy - Ap+)(y.r - Yh ) (2.11) 
h 

We find the difference yf = Yh as the width of the characteristic band which is obtained due to reflection from 
the shock wave in the part cdw of the pencil of rarefaction waves. All the c +-characteristics of this pencil, which 
are only distorted in a small neighbourhood of the shock wave (to the right of the c--characteristic ck), diverge as 
a fan from the point d. In dch, the flow is of the simple wave type. Consequently, here 

Act = Act_ + cto (AO- AO_ ) = (ac, - aocto )A~ + otoAO (2.12) 

with an accuracy to terms in A, inclusive. 
The derivative ct0 can be found by differentiating the formulae describing the simple wave. This is simpler to 

do numerically, by calculating ct(a, 0 ± ~iO) with b0 ,~ O using them. This method is used below. 
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The c--eharactelsistic ch and wf reflected from the shock wave as well as the c+-charaeteristics of the 
pencil are rectilinear almost everywhere. The exceptions are the neighbourhoods of the point c for ch 
and of the points w and f in the case of wf. In the reflected characteristic band outside the neighbour- 
hoods, a simple wave type flow is obtained with rectilinear c--characteristics which diverge when ~. > 
0 and converge when ~ < O. The change in the width of the band associated with this is proportional 
to ~(A~_- AO). We now take account of the facts which have been noted, the equalities (2.2) and (2.12) 
and the compatibilJity conditions (2.4), while retaining the necessary number of terms everywhere. As 
a result, we find, wiith the required accuracy, that 

APs - Ap+ = 2K(AO - AO_) / A, Y / -  Yh = ~(AO_ - AO) (2.13) 

I sin(O+ cx_ ~)1 ( l+o to) tgOs i , (~ -  O) 
= X 1+~, sin(t~-O+ot)J sinotsin---'~O+-----~--c~'-) 

The difference between the expression in the square brackets in the formula for ~ and unity character- 
izes the broadening or narrowing of the characteristic band. This expression is always positive. When 

< 0, this is confirmed when account is taken of the fact that I ~. I < 1. On substituting (2.13) into 
(2.11) and the result of this into (2.10), we arrive at the required expression 

AX=ZoAo+Zao(A(I) 2 +ZS(AO- AO_) 2, Z S = - L ~ / A  (2.14) 

For the independent geometric parameters in (2.14), it is more convenient to take Ao and the 
difference A d -  A~L rather than Ao and AO with the replacement of AO_ by otoAo. In this case the 
necessary and sufficient conditions for a minimum of A Z (the equality of the first derivatives to zero 
and the positiveness of the second derivatives at once) give 

Ate"' = -Zo / (2Xao), 

Xaa >0, X l '>O 

AO" = AO'_""= a o (1 + boAo "m )Aa"  
(2.15) 

where the superscript m denotes values which give a minimum value of Z. 
Only Z can be negative in the formula for ZL Actually, the positiveness of the square bracket has been 

written about above. The non-negativeness of the trigonometric functions occurring in Z £ and the 
coeffieientA is obvious. The sum 1 + (x~ is also positive since a reduction in a corresponds to a reduction 
in 0 accompanying flow past a corner point. Hence, according to the second inequality from (2.15), 
the scheme of Fig. 1(c) can only be optimal when k < 0, that is, in the domain D- of the V**x-plane. 
This conclusion (but not the formulae for determining Ao m and AO m) are identical with the assertion 
made within the framework of "variation in the e-band". 

Caleuiations for a perfect gas with different le showed that Zoo > 0 everywhere in D. According to 
(2.10), the signs of ;~ and Z are the same. Hence, by virtue of the first equality of (2.15), Aft" > 0 when 

< 0 and M # 1 as it must be in the case of optimal contours of the type under investigation. The 
meaning of the second condition of (2.15) is also understandable: the position of the main corner point 
of the optimal contour when Z < O is such that the initial c+-characteristic of the pencil of rarefaction 
waves (Fig. ld) arrives at the point w of intersection of the shock wave and the closing c--characteristic 
of wf. As a result, the rarefaction waves which are reflected from the shock wave as compression waves 
are not incident on the end segment of the generatrix and do not increase Z- Optimal contours, 
constructed using the iterative procedure developed in [10, 11] using the general method of Lagrange 
multipliers and the method of characteristics, do not possess this property. Despite this as is shown 
below, they give only a slightly greater advantage, compared with a wedge, than the almost optimal 
generatrices of this work. The reason for this difference and its order of magnitude are explained in 
the following section. 

According to (2.14) and (2.15), the magnitude of Z for the contour which is optimal in the 
approximation under consideration is less than the magnitude of Z for the rectilinear generatrix, that 
is, for the wedge, by 

AZ" = -Z 2 / (4Za a) (2.16) 

The stipulation made above concerning M # 1 is associated with the unlimited increase in the coefficients 
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7~ and Zoo when M ~ 1. By virtue of the formulae which have been presented above, for values of  M close 
to unity 7~, - (M - 1) -v2 and 7,~ - (M - 1) -5/2. Hence, from (2.15) and (2.16), when M = 1, we have that 

Ao "~ - ~.(M - 1) 2, A~ m - ~2(M - 1) ~ 

Consequently, Ao m = 0 when M = 1, that is, a wedge is the body of minimum drag not only if 
~, = 0 but also on the boundary of the domain D, which corresponds to a sonic velocity beyond the 
shock wave and ~, ~ 0. This result is so unexpected that it requires additional explanation. In the case 
of  sonic flow (with respect to the Mach number  beyond the shock wave) past a wedge (Fig. le) ,  the 
c÷- and c--characteristics coincide and are perpendicular to its surface. Hence, even within the framework 
of a purely linear approach which, as a matter  of fact, is inapplicable when M = 1, variation in the 
characteristic band, unlike the situation depicted in Fig. l(b),  does not "reject" a rectilinear generatrix 
when k ~ 1 in the case of Fig. l(e).  

Yet another  explanation of the optimality of  a sonic wedge is obtained by considering the evolution 
of Fig. l (a)  when 5 = M - 1 ~ 0. Let  e > 0, let n > 1 be fixed and let d ,  be the corresponding point 
of  "reflection". Then, for any n < 0- and e > 0, it is possible to choose 5 = ~i(n, e) such that all points 
dk with k ~< n lie in the e-neighbourhood of the p o i n t f  and, when 8 = 0, they merge with it. Figure l (e )  
also explains the reason for the inapplicability of the "control contour method" in this case. A mandatory 
condition for this method to be applicable [3] is the presence of two segments in the required generatrix: 
an initial segment which determines the shape of the shock wave iw and a final segment which determines 
the distribution of the parameters  in the dosing characteristic wf. In Fig. l(b),  these segments a r e / d  
and df.  In the case of  Fig. l(e),  the segment df  degenerates to the point f. 

By virtue of [6, 7] in the case of a generatrix if which is close to a straight line, the main term 8~ of the increment 
("variation") in ~ is given by the formula 

~ = ~ a,~xdn, an - ~n+l 

in which &dra is the variation (incremental growth for fixedy) inx at the point dn and do = d. It has already been 
pointed out that it was proposed that M > 1 in [6, 7] when deriving this formula. On the other hand, according to 
[3], the formula for the first variation in X, which is obtained by the "general method of Lagrange multipliers" 
(MLM), reduces to the same expression, but now also for a sonic wedge (M = 1) when there is a small variation 
in its generatrix. Since, when M = 1, the set of points dn with &d~ ~ 0 is empty, a sonic wedge satisfies the necessary 
condition for an extremum of ;C within the framework of MLM. Finally, in MLM, the above-mentioned "small 
variation" of the generatrix if must ensure the smallness of the variations of all the parameters. When M = 1, this 
imposes extremely rigorous constraints on the smoothness of the contour which is varied. An arbitrary variation 
of if, which causes the breakdown of the sonic flow, creates problems with the application of any of the optimization 
methods which assume that the variations are small. For instance, if finite positive Ao m were to be obtained from 
(2.15) when M ~ 1, it would be impossible to use these results. Conversely, Ao m = 0 when M = 1 is evidence of 
the compatibility of the result obtained and the method of finding it. 

In the approach which has been developed, the calculation of AL/n and the reduction in the drag coefficient (in 
percent) 

A~ m 
~c x = Acx x l 0 0 = -  Xl00 (2.17) 

Cx Z 

do not require a knowledge of the coordinates of the comer point d. In the case of a known flow system (Fig. ld) 
with Ao m and AO m from (2.15), it is easy to construct a numerical procedure for calculating its coordinates. Since, 
however, Ax d in (2.1) and (2.9) only occurs multiplied by a quantity of the order of magnitude of A, and (2.10) 
does not contain Ard at all, it is sufficient to find it to the first order of magnitude. 

The basic scheme for obtaining a linear relationship between Ax d and Ao m for the optimal generatrix is as follows. 
Initially, ~x w and Ayw are expressed in terms of Ao m and ~Xd from a consideration of the rectilinear segment of the 
shock wave iw and the rectilinear characteristic dw. Here, the equality (2.9) is used and only terms which are linear 
with respect to Ao m and Ax d are retained in the final formulae. On the other hand, Axf = Ayf = 0 and the pointsf 
and w are joined by a characteristic which is only warped close to the points w andf. This yields a linear relationship 
between Ax w, Ayw, AO + and AS = asAo m. We now substitute AO +, determined by the linear part of (2.7) with AO_ 
= a0Ao ~n and the expressions for Axw and Ayw in terms of Aa m and 4AXd, found up to this point, into it. Finally, we 
obtain 

Ax d = xoAo" (2.18) 
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x a = X ta o [sin 2ct sin (o - 0 + cQ cos(o - 20 - co) + cos 0 sin 2 (0 + cx - o)] + 

+ act cc,sO sin 20t sin 2 ( o -  0 ) -  a00c o cos 0 sin(O +co - o) sin(o - 0 + ct)-  cosO sin 2 2~x} x 

x [cosOsin 2ctsin2 ( o -  0 + 0t)] -I 

with the required accuracy. 

3. In that  par t  D + of  domain  D of  the V***-plane where  k > 0, contours  with a convex main corner  
point  cannot  be  close to optimal. Instead o f  these, it is natural  to investigate configurations with a corner  
point  past  which a flow occurs with the format ion  of  a weak  shock wave dw.  W h e n  ~ > 0, it is also 
reflected f rom the leading shock wave iw by the weak  shock wave as shown in Fig. l(f) .  In this figure 
and subsequently,  weak  shock waves are depicted by bold lines. If  the pressure drop in dw is equal to 
Lo] + -- Ap4- - Ap_, then, for  the reflected shock wave, Lo]- = XLo] + and, in the case o f  its reflection f rom 
the wail d f  beyond  the shock wave (in hf), 

A p -  Ap+ = 2~,[p] + = 2~,(A0+ - A 0 )  / A > 0 (3.1) 

Here, account has been taken of the fact that, in weak shock waves and in simple waves ("of the 
, • 4. 

s a m e  family' : in the. case of Fig. lf, it is in a simple wave with rectilinear c -characteristics) the relations 
between the increments in p and O are distinguished by quantifies of the order of A 3. On account of 
this, in particular, file relationship between Ap+ - Ap_ and A04. - AO_ is retained as well as expression 
(2.10) for Ag with the previous coefficients go and Xea. Now, however, when account is taken of (3.1), 
we have 

Ag = g o A o  + gao (Ao)  2 + 2;L(AO+ - AO_)Aysn / A = 

= g o A o + g a o ( A o )  2 +2kOoAoAys~ , / A  (3.2) 

instead of (2.11). 
The difference ~,y = Yf-Yh, as previously, is a quantity of the order of A and the second expression 

is obtained from the first by virtue of the fact that formula (2.7) holds for any small breaks. Since, 
according to this fc,rmula, Oo < 0 and Ayp, ~ 0 then, in the case of the generatrices which are now being 
investigated with ,~,o < 0, the last term m (3.2) is either positive (when Yh < Yf) or equal to zero. The 
second possibility occurs if the weak shock wave reflected from iw does not arrive in the segment df 
or, in the limiting case, arrives at its terminal point f. A contour, which is close to the optimal contour, 
corresponds, in fac~, to this limiting situation (Fig. lg). 

The following fact is important for the proof of this assertion: if the position of point d is such that the reflected 
weak shock wave is not incident on df  then, in (3.2) as well as in (2.11), there are no terms of the order of A and 
A 2 which contain Axa. On account of this, for a fixed AO_ or, what is the same, a fixed Ao, a small displacement of 
the point d along/d Changes Ag by larger orders of magnitude. On carrying out the necessary operations, we obtain 

A~ = ~ol~O" + ~OO (Ao)  2 + ~OOX (AO) 2 AXd (3.3) 

C~ a sn o o+o, [s o, l cosO+  +osil o o+o ] 
goox - 4Asin 2 (O -O)cos  20cos 2 ct 

instead of (3.2). 
In the case of a perfect gas, at least, the coefficient ~ is positive not only in D + but also everywhere in D. In 

the case of a fixed A,~, a reduction in Ax a therefore reduces A~. A displacement of points d and w and, together 
with them, the reflected weak shock wave to the left corresponds to a decrease in Axa. For a certain 6xa, this shock 
wave arrives at the point f. When Axa is reduced further the difference Y f -Y h  =- AYlh becomes positive. After this, 
it is necessary to add into (3.3) the last term from (3.2). For fixed Ao, it can be shown that the change in the increment 
Axa which corresponds to Aya, > 0 is equal to 8Axa = (SAyd)ctg 0 = -Ay/h ctg 0 and the change in the increment 
AX associated with this is given by the formula 

6AX = ZyAyjh, Z.,. = Aom (2lOg - AZaaxAO m ctgO) / (2A) (3.4) 

with AO m from (2.15). + 
According to calculations which were carried out, the factor Xy in D is positive, which also proves the assertion 

made above concerning the closeness of a contour with a reflected shock wave arriving at the point / to  the optimal 



404 A . N .  Kraiko and D. Ye. Pudovikov 

contour. Moreover, the factor Z, which is non-negative everywhere in D, vanishes only on D °, that is, on lines where 
the reflection coefficient is equal to zero. The positiveness of Z, not only in D + but also in D-  is natural. Actually, 
if the flow around a convex corner point is considered in the linear approximation, the pencil of rarefaction waves 
in Fig. l(c) and (d) is replaced by a weak rarefaction shock wave which is reflected from the leading shock wave 
by the weak shock wave (in D-, the reflection coefficient ~, < 0). As a result, we again arrive at expression (3.4) 
for 8Ax and the optimality condition for the generatrix shown in Fig. l(d) reduces to the inequality Xy > 0. 

In the case under consideration, as when ~, < 0, the maximum reduction in the drag is determined using (2.17) 
with AZ m from (2.16). Here, as before, there is no need to know the magnitude of AXd which, for ~, > 0, is given 
by the formula 

Axd=x{a,~sin2(o-O-sin2ot  ao( l+cto)  [ s i n ( o - O - a ) ]  
s in2 (o_d+c t )  ÷ ~ (2+~)  1 + s in (o -  O +ct) 

ao sina [ s i n 2 ( o -  d -  ct) s in2Os in (o -O-c t )  
+ cosOcos(O+ct) s in2 (o -O+c t )  + s in2c ts in (o-d+ct )  + 

+ 2 c ° s ( ° - 2 0 - t x )  ]} 
s in2(o_O+ct)  coso~coso Ao"' (3.5) 

When account is taken of the difference in the flow schemes in Fig. l(g) and (d), the derivation of formula (3.5) 
is similar to the derivation of (2.18). The principal difference in the derivation of (3.5) is associated with the fact 
that the weak shock wave dw, which, here, replaces a pencil of characteristics, goes along the bisector of the c +- 
characteristics up to and after it and the weak shock wave wf goes along the bisector of the analogous c-- 
characteristics. 

4. The formulae presented above give generatrices which are close to optimal leading edges with a single "main" 
corner point past which flow occurs with the formation of either a pencil of rarefaction waves (in D-, that is, when 

< 0) or aweak shock wave (inD +, that is, when ~, > 0). The calculation of thousands of such generatrices requires 
several minutes using a 486 AT personal computer. As a result, it was possible to construct the isolines of any of 
their local and integral characteristics for all velocities II .  of the supersonic free stream (M. > 1) divided by its 
critical velocity and relative thickness x corresponding to the flow past the required generatriees with an attached 
shock wave. 

As an illustration of what has been said, the isolines of &:x, AO_ and ~Od ~- I AO+ - AO_ I in the W.x-plane, 
constructed using 6400 points, are shown in Figs 2-4(a) for a perfect gas with lc = 1.4. Here, W. ffi ( II ,  - 1)/ 
(V.  m -  1) with a maximum velocity V. m = ~/(0¢ + 1)/(to - 1)) = 2.45. The zero level lines are the W. axis, the two 
isolines entering this axis at finite angles and the dashed "sonic" line, that is, the boundary of domain D which 
corresponds to sonic wedges. According to what has been said previously, the results referring to these isolines 
and, in particular, their shape in the W.x-plane, are exact. We shall refer to "non-trivial" lines, that is, zero level 
lines which differ from the IV. axis, as "null" lines. As IV. increases the left null isoline approaches the "sonic" 
line on which 2~ < 0 and, in the scale of Figs 2-4, merges with it. In the domain D +, that is, in the strip between 
the null isolines, the reflection coefficient is positive but it is negative outside D +. 

Values of ~c x, that is, the relative advantages (in percent) with respect to the drag, are given in Fig. 2(a) close 
to the isolines. Moreover, henceforth, the quantities Ag m for the generatrices constructed were determined not 
using the approximate formula (2.16) but using the exact relationships which describe oblique shock waves and a 
centred rarefaction wave. The geometric parameters required for this computation were successively calculated 
as follows: Ao m and AO m_ using (2.15), Axa using (2.18) in D-  and using (3.5) in D +, AO+ using (2.7) and, finally, 
Ay d using (2.9). The numbers on the isolines in Fig. 3(a) and Fig. 4(a) are the values of AO_ multiplied by 100 and 
the values of the deflection angle AO d (in radians). 

The deflection angles and the advantages with respect to c x of the leading edges in this paper which are close 
to optimal, and the families of contours constructed in [10, 11] using an iterative procedure based on the general 
method of Lagrange multipliers are compared in Table 1 (quantities from [10, 11] are without the superscript m). 
The relative difference A~cx = (~cx - ~cm)/SCx in the advantages is shown in the final column of this table. As a 
rule (the exception is the first version, where Ac x < 0.02%), it does not exceed 0.1 with a considerably greater (from 
10 to 38%) difference in the deflection angles. The insignificant excess (by 2% of&: m over &:x in the fourth version 
is due to the insufficient number of places in the value of cx given in [10, 11]). The same problem arose earlier in 
[13]. So, the leading edges which have been constructed, in spite of the appreciable differences from the generatrices 
in [10, 11] as regards their shape, reproduce almost all the difference in the cx values of wedges and optimal bodies. 
A comparison of Table I with Fig. 2(a) shows that the advantages in cx found for the versions calculated in [10, 
11] were far from maximal. Actually, while the maximum advantage with respect to cx in [10, 11] did not exceed 
0.66%, according to Fig. 2(a), the maximal &:m > 1.3%. Taking into account what has been said above, this 
corresponds to &:x - 1.5%. 

As can be seen from Fig. 2(a), the maximal &rm are obtained in the case of a hypersonic flow past sufficiently 
thick bodies (x >~ 0.2-0.3). Dissociation and ionization which, in the case of air, are inevitable in such cases necessitate 
the use of more complex thermodynamics than the thermodynamics of a perfect gas with t: = 1.4. The perfect gas 
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model with small ~ c~m, nevertheless, provide an idea of the direction of the effect of these processes. The results 
of calculations carried out with this aim for 1( = 1.1 are shown in Figs 2--4(b) which are analogous to Figs 2--4(a). 
A comparison of these figures shows that a reduction in ~: leads to a narrowing of the domain D* and a reduction 
in it of the deflection angles and the advantage with respect to cx. Conversely, in the part D-, which corresponds 
to high velocities, bo15 the deflection angles and Sc m increase. When !c = 1.1, the maximum value of 8c m reaches 
6% here. The possibility of the rapid determination of the dependence of 5c m on W. or V®, x, ~ etc. is one of the 
main results of the approach which has been developed. It has already been noted that the lack of such information 
prevented Shipilin [10, 11] from carrying out calculations with more advantageous versions. The almost optimal 
contours in [8] are still less advantageous. In passing, we note that the profiling method proposed in [8], in spite 
of the self-criticism in [14], is, in the final result, equivalent to the method in [10, 11]. 

In concluding, we shall discuss the basic differences between the generatrices constructed above and 
contours which are optimal in the strict sense of  this term. In D-, this difference is not in the least 
associated with smaU additional comer  points which, moreover,  were not taken into account either in 
[8] or  in [10, 11]. The non-optimality of  the generatrices constructed is associated in the first place with 
the fact that, in the scheme in Fig. l (d) ,  the pencil of rarefaction waves within the limits of iwfis not 
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reflected from the shock wave. When account is taken of this fact in the expression for A Z by including 
terms of higher order than quadratic, this leads to a state of affairs where a small part of the pencil is 
reflected from the shock wave. In this case, the negative effect of the reflected compression wave (~. < 
0) will be slightly overlapped by the reduction in Z due to the shift to the left of the comer point d. It 
follows from Table 1 that, in the case of appreciable ~c m, the effect of taking account of higher-order 
terms in A Z can lead to an additional reduction in cx by approximately a further ~cm/10. 

In D+, the difference between the optimal contour and that shown in Fig. 1 (g) is of a more fundamental 
nature. In fact, on applying variation in e-bands to it, we find that the optimal generatrix must have 
comers at points dl and d2. The corner at de, which is associated with reflection from the weak shock 
wave dw, is unimportant. In contrast to this, the corner point at dl will be of the same order as the 
corner point at d as its occurrence is attributable to reflection from the main shock wave. Allowance 
for this fact leads to the scheme shown in Fig. l(h). In this scheme, the rarefaction wave (~, > 0) reflected 
from iw is incident as a whole on the contour being optimized and the dimensionless length of the 
segments hfand did are quantities of the same order of magnitude as the breaks. This, however, does 
not enable us to assert that the additional reduction in cx associated with the transition to the new scheme 
will be of the order of ~c m. 

Finally, everywhere above, only those deviations of the required generatrices from straight lines were 
permitted which did not lead to the occurrence of local subsonic zones. In particular, the change in Z 
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V .  '~ x 104 a O  d x 104 a O  m x , ,  . ^3 d 104 ~t'xX 103 •x X lU A&'xX 102 

1.4 2128 31 28 20 16 20 
1.6 3858 47 30 38 34 9 
2.1 4369 209 160 118 107 10 
2,3 2069 172 151 299 305 -2 
2,3 4802 499 321 656 586 II 
2,3 7237 299 208 153 141 8 
2,4 7483 526 327 429 394 8 

was not investigated when a leading end face was introduced past which flow takes place with a separated 
shock wave. An attempt to solve this problem within the approximation of Newton's law of resistance 
suggests that, when almost optimal contours (or optimal contours, like a "sonic" wedge) exist past which 
there is a flow with an attached shock wave close to the upper boundary of D, that is, close to the dashed 
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curve in Figs 2--4, generatrices with a leading end face are optimal. As V. increases, the width of the 
part D which is "chopped off" by such solutions, expands. When M.  >> 1 and x > 1, the "sonic" wedge 
and the wedge which corresponds to the left "null" isoline in Figs 2-4 will certainly not be optimal. 
Here, the inequality from (2.15) as well as the inequality dxW/dy I> 1/~/3, that is the Legendre condition, 
which, in Newton's approximation must be satisfied on the optimal generatrix [1-3], turn out not to be 
the sufficient conditions but only the necessary conditions of optimality. According to [15], the 
introduction of a small end face in the above-mentioned approximation at any and not only at the leading 
point of the optimal contour gives the inequality: dxW/dy I> 1, which is stronger than the Legendre 
condition. There is an exactly analogous inequality for the full system of equations of gas dynamics, 
but the possibility of a flow with an attached shock wave is not determined by x*(M.), which was 
mentioned at the start of the paper. 
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